Perbandingan Hasil Delignifikasi Jerami Padi menggunakan Natural Ternary Deep Eutectic Solvent dengan Variasi Penambahan Air

Penulis

  • Maria Assumpta Nogo Ole Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Dian Ranggina Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Harun Pampang Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Muhammad Arham Yunus Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Zakiyah Darajat Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Mimin Septiani Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Andina Sari Maharani Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Andi Ahmad Maulana Senna Cincing Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Sherlina Zalfa Pertiwi Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang
  • Dwi Ferel Imanuel Bala Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang

Kata Kunci:

Jeram padi, Delignifikasi, NATDES, Penambahan air, Gula reduksi

Abstrak

Jerami padi, sebagai hasil samping pertanian yang melimpah di Indonesia, memiliki potensi besar sebagai bahan baku untuk produksi energi terbarukan seperti biohidrogen dan bioetanol. Kandungan lignin dalam biomassa menghambat hidrolisis sehingga perlu dikurangi; untuk itu penelitian ini mengembangkan metode delignifikasi menggunakan Natural Ternary Deep Eutectic Solvent (NATDES) yang tersusun dari kolin klorida, asam laktat, dan asam sitrat pada rasio molar 0,1:0,6:0,3 dengan variasi penambahan air 0–20% (v/v). Perlakuan dilakukan pada rasio padatan:pelarut 1:10 (w/v) dalam reaktor pada 121 °C. Analisis FTIR pada residu padatan menunjukkan kadar lignin terendah (0,72%) pada perlakuan dengan 20% air, yang mengindikasikan bahwa penambahan air menurunkan viskositas NATDES dan meningkatkan efisiensi delignifikasi. Analisis gula pereduksi menggunakan metode dinitrosalisilat (DNS) menunjukkan bahwa kadar gula pereduksi terlarut tidak maksimal pada perlakuan 20% air akibat adanya fenolik bebas hasil degradasi lignin; oleh karena itu perlakuan pra‑analitik untuk assay DNS perlu dioptimalkan untuk menghilangkan interferensi fenolik, furfural, dan kekeruhan serta memastikan kuantifikasi gula pereduksi yang akurat. Hasil penelitian ini menunjukkan perlunya optimasi kandungan air dalam formulasi NATDES untuk meningkatkan potensi NATDES sebagai pelarut hijau untuk mendukung konversi jerami padi yang lebih bersih dan efisien.

Unduhan

Data unduhan belum tersedia.

Referensi

AlYammahi, J., Darwish, A. S., Almustafa, G., Lemaoui, T., AlNashef, I. M., Hasan, S. W., Taher, H., & Banat, F. (2023). Natural deep eutectic solvents for Ultrasonic-Assisted extraction of nutritious date Sugar: Molecular Screening, Experimental, and prediction. Ultrasonics Sonochemistry, 98, 106514. https://doi.org/10.1016/j.ultsonch.2023.106514

Badan Pusat Statistik. (2025). Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi-Tabel Statistik. In Accessed: Jan (Vol. 2).

Bai, Y., Wang, W., Zhang, Y., Wang, X., Wang, X., & Shi, J. (2022). Effects of Different Delignification and Drying Methods on Fiber Properties of Moso Bamboo. Polymers, 14(24), 5464. https://doi.org/10.3390/polym14245464

Bench Chem. (2025). “Common interferences in the dinitrosalicylic acid (DNS) assay” Technical Support Center: Dinitrosalicylic Acid (DNS) Assay. https://pdf.benchchem.com/600/Common_interferences_in_the_dinitrosalicylic_acid_DNS_assay.pdf

Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370–381. https://doi.org/10.1016/j.biortech.2018.06.004

Deshavath, N. N., Mukherjee, G., Goud, V. V., Veeranki, V. D., & Sastri, C. V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 156, 180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045

Fakayode, O. A., Akpabli-Tsigbe, N. D. K., Wahia, H., Tu, S., Ren, M., Zhou, C., & Ma, H. (2021). Integrated bioprocess for bio-ethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation. Renewable Energy, 180, 258–270. https://doi.org/10.1016/j.renene.2021.08.057

Fernandes, C., Aliaño-González, M. J., Cid Gomes, L., Bernin, D., Gaspar, R., Fardim, P., Reis, M. S., Alves, L., Medronho, B., Rasteiro, M. G., & Varela, C. (2024). Lignin extraction from acacia wood: Crafting deep eutectic solvents with a systematic D-optimal mixture-process experimental design. International Journal of Biological Macromolecules, 280, 135936. https://doi.org/10.1016/j.ijbiomac.2024.135936

Grillo, G., Calcio Gaudino, E., Rosa, R., Leonelli, C., Timonina, A., Grygiškis, S., Tabasso, S., & Cravotto, G. (2021). Green Deep Eutectic Solvents for Microwave-Assisted Biomass Delignification and Valorisation. Molecules, 26(4), 798. https://doi.org/10.3390/molecules26040798

Jančíková, V., & Jablonský, M. (2024). Exploiting Deep Eutectic Solvent-like Mixtures for Fractionation Biomass, and the Mechanism Removal of Lignin: A Review. Sustainability, 16(2), 504. https://doi.org/10.3390/su16020504

Jančíková, V., Jablonský, M., Voleková, K., & Šurina, I. (2022). Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review. Energies, 15(24), 9333. https://doi.org/10.3390/en15249333

Javier-Astete, R., Jimenez-Davalos, J., & Zolla, G. (2021). Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLOS ONE, 16(10), e0256559. https://doi.org/10.1371/journal.pone.0256559

Ji, Q., Yu, X., Yagoub, A. E.-G. A., Chen, L., Fakayode, O. A., & Zhou, C. (2021). Synergism of sweeping frequency ultrasound and deep eutectic solvents pretreatment for fractionation of sugarcane bagasse and enhancing enzymatic hydrolysis. Ultrasonics Sonochemistry, 73, 105470. https://doi.org/10.1016/j.ultsonch.2021.105470

Kostryukov, S. G., Matyakubov, H. B., Masterova, Yu. Yu., Kozlov, A. Sh., Pryanichnikova, M. K., Pynenkov, A. A., & Khluchina, N. A. (2023). Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. Journal of Analytical Chemistry, 78(6), 718–727. https://doi.org/10.1134/S1061934823040093

Liu, Y., Deak, N., Wang, Z., Yu, H., Hameleers, L., Jurak, E., Deuss, P. J., & Barta, K. (2021). Tunable and functional deep eutectic solvents for lignocellulose valorization. Nature Communications, 12(1), 5424. https://doi.org/10.1038/s41467-021-25117-1

Majová, V., Jablonský, M., & Lelovský, M. (2021). Delignification of unbleached pulp by ternary deep eutectic solvents. Green Processing and Synthesis, 10(1), 666–676. https://doi.org/10.1515/gps-2021-0066

Nargotra, P., Sharma, V., Sharma, S., Kapoor, N., & Bajaj, B. K. (2022). Development of consolidated bioprocess for biofuel-ethanol production from ultrasound-assisted deep eutectic solvent pretreated Parthenium hysterophorus biomass. Biomass Conversion and Biorefinery, 12(12), 5767–5782. https://doi.org/10.1007/s13399-020-01017-0

Pampang, H., Ranggina, D., Raditya, A. D., Anugrawan, A. O., Julianto, R., & Ole, M. A. N. (2025). The effect of simultaneous combination of hydrothermal and ultrasound-natural deep eutectic solvent (NADES) to increase the delignification of rice straw. 020009. https://doi.org/10.1063/5.0298799

Rozas, S., Benito, C., Alcalde, R., Atilhan, M., & Aparicio, S. (2021). Insights on the water effect on deep eutectic solvents properties and structuring: The archetypical case of choline chloride + ethylene glycol. Journal of Molecular Liquids, 344, 117717. https://doi.org/10.1016/j.molliq.2021.117717

Sharma, V., Nargotra, P., Sharma, S., & Bajaj, B. K. (2021). Efficacy and functional mechanisms of a novel combinatorial pretreatment approach based on deep eutectic solvent and ultrasonic waves for bioconversion of sugarcane bagasse. Renewable Energy, 163, 1910–1922. https://doi.org/10.1016/j.renene.2020.10.101

Vilková, M., Płotka-Wasylka, J., & Andruch, V. (2020). The role of water in deep eutectic solvent-base extraction. Journal of Molecular Liquids, 304, 112747. https://doi.org/10.1016/j.molliq.2020.112747

Wood, I. P., Elliston, A., Ryden, P., Bancroft, I., Roberts, I. N., & Waldron, K. W. (2012). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass and Bioenergy, 44, 117–121. https://doi.org/10.1016/j.biombioe.2012.05.003

Xu, G.-C., Ding, J.-C., Han, R.-Z., Dong, J.-J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203, 364–369. https://doi.org/10.1016/j.biortech.2015.11.002

Yan, D., Ji, Q., Yu, X., Li, M., Abiola Fakayode, O., Yagoub, A. E. G. A., Chen, L., & Zhou, C. (2021). Multimode-ultrasound and microwave assisted natural ternary deep eutectic solvent sequential pretreatments for corn straw biomass deconstruction under mild conditions. Ultrasonics Sonochemistry, 72. https://doi.org/10.1016/j.ultsonch.2020.105414

Yang, Y., Zhao, L., Ren, J., & He, B. (2022). Effect of Ternary Deep Eutectic Solvents on Bagasse Cellulose and Lignin Structure in Low-Temperature Pretreatment. Processes, 10(4), 778. https://doi.org/10.3390/pr10040778

Yanuartono, Yanuartono, Purnamaningsih, H., Indarjulianto, S., & Nururrozi, A. (2017). Potensi jerami sebagai pakan ternak ruminansia. Jurnal Ilmu-Ilmu Peternakan, 27(1), 40–62. https://doi.org/10.21776/UB.JIIP.2017.027.01.05

Unduhan

Diterbitkan

2026-01-31

Cara Mengutip

[1]
M. A. N. Ole, “Perbandingan Hasil Delignifikasi Jerami Padi menggunakan Natural Ternary Deep Eutectic Solvent dengan Variasi Penambahan Air”, JTKM, Jan 2026.

Terbitan

Bagian

Artikel

Kategori

Artikel Serupa

1 2 3 4 5 > >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.