Perbandingan Hasil Delignifikasi Jerami Padi menggunakan Natural Ternary Deep Eutectic Solvent dengan Variasi Penambahan Air
Kata Kunci:
Jeram padi, Delignifikasi, NATDES, Penambahan air, Gula reduksiAbstrak
Jerami padi, sebagai hasil samping pertanian yang melimpah di Indonesia, memiliki potensi besar sebagai bahan baku untuk produksi energi terbarukan seperti biohidrogen dan bioetanol. Kandungan lignin dalam biomassa menghambat hidrolisis sehingga perlu dikurangi; untuk itu penelitian ini mengembangkan metode delignifikasi menggunakan Natural Ternary Deep Eutectic Solvent (NATDES) yang tersusun dari kolin klorida, asam laktat, dan asam sitrat pada rasio molar 0,1:0,6:0,3 dengan variasi penambahan air 0–20% (v/v). Perlakuan dilakukan pada rasio padatan:pelarut 1:10 (w/v) dalam reaktor pada 121 °C. Analisis FTIR pada residu padatan menunjukkan kadar lignin terendah (0,72%) pada perlakuan dengan 20% air, yang mengindikasikan bahwa penambahan air menurunkan viskositas NATDES dan meningkatkan efisiensi delignifikasi. Analisis gula pereduksi menggunakan metode dinitrosalisilat (DNS) menunjukkan bahwa kadar gula pereduksi terlarut tidak maksimal pada perlakuan 20% air akibat adanya fenolik bebas hasil degradasi lignin; oleh karena itu perlakuan pra‑analitik untuk assay DNS perlu dioptimalkan untuk menghilangkan interferensi fenolik, furfural, dan kekeruhan serta memastikan kuantifikasi gula pereduksi yang akurat. Hasil penelitian ini menunjukkan perlunya optimasi kandungan air dalam formulasi NATDES untuk meningkatkan potensi NATDES sebagai pelarut hijau untuk mendukung konversi jerami padi yang lebih bersih dan efisien.
Unduhan
Referensi
AlYammahi, J., Darwish, A. S., Almustafa, G., Lemaoui, T., AlNashef, I. M., Hasan, S. W., Taher, H., & Banat, F. (2023). Natural deep eutectic solvents for Ultrasonic-Assisted extraction of nutritious date Sugar: Molecular Screening, Experimental, and prediction. Ultrasonics Sonochemistry, 98, 106514. https://doi.org/10.1016/j.ultsonch.2023.106514
Badan Pusat Statistik. (2025). Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi-Tabel Statistik. In Accessed: Jan (Vol. 2).
Bai, Y., Wang, W., Zhang, Y., Wang, X., Wang, X., & Shi, J. (2022). Effects of Different Delignification and Drying Methods on Fiber Properties of Moso Bamboo. Polymers, 14(24), 5464. https://doi.org/10.3390/polym14245464
Bench Chem. (2025). “Common interferences in the dinitrosalicylic acid (DNS) assay” Technical Support Center: Dinitrosalicylic Acid (DNS) Assay. https://pdf.benchchem.com/600/Common_interferences_in_the_dinitrosalicylic_acid_DNS_assay.pdf
Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370–381. https://doi.org/10.1016/j.biortech.2018.06.004
Deshavath, N. N., Mukherjee, G., Goud, V. V., Veeranki, V. D., & Sastri, C. V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 156, 180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045
Fakayode, O. A., Akpabli-Tsigbe, N. D. K., Wahia, H., Tu, S., Ren, M., Zhou, C., & Ma, H. (2021). Integrated bioprocess for bio-ethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation. Renewable Energy, 180, 258–270. https://doi.org/10.1016/j.renene.2021.08.057
Fernandes, C., Aliaño-González, M. J., Cid Gomes, L., Bernin, D., Gaspar, R., Fardim, P., Reis, M. S., Alves, L., Medronho, B., Rasteiro, M. G., & Varela, C. (2024). Lignin extraction from acacia wood: Crafting deep eutectic solvents with a systematic D-optimal mixture-process experimental design. International Journal of Biological Macromolecules, 280, 135936. https://doi.org/10.1016/j.ijbiomac.2024.135936
Grillo, G., Calcio Gaudino, E., Rosa, R., Leonelli, C., Timonina, A., Grygiškis, S., Tabasso, S., & Cravotto, G. (2021). Green Deep Eutectic Solvents for Microwave-Assisted Biomass Delignification and Valorisation. Molecules, 26(4), 798. https://doi.org/10.3390/molecules26040798
Jančíková, V., & Jablonský, M. (2024). Exploiting Deep Eutectic Solvent-like Mixtures for Fractionation Biomass, and the Mechanism Removal of Lignin: A Review. Sustainability, 16(2), 504. https://doi.org/10.3390/su16020504
Jančíková, V., Jablonský, M., Voleková, K., & Šurina, I. (2022). Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review. Energies, 15(24), 9333. https://doi.org/10.3390/en15249333
Javier-Astete, R., Jimenez-Davalos, J., & Zolla, G. (2021). Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLOS ONE, 16(10), e0256559. https://doi.org/10.1371/journal.pone.0256559
Ji, Q., Yu, X., Yagoub, A. E.-G. A., Chen, L., Fakayode, O. A., & Zhou, C. (2021). Synergism of sweeping frequency ultrasound and deep eutectic solvents pretreatment for fractionation of sugarcane bagasse and enhancing enzymatic hydrolysis. Ultrasonics Sonochemistry, 73, 105470. https://doi.org/10.1016/j.ultsonch.2021.105470
Kostryukov, S. G., Matyakubov, H. B., Masterova, Yu. Yu., Kozlov, A. Sh., Pryanichnikova, M. K., Pynenkov, A. A., & Khluchina, N. A. (2023). Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. Journal of Analytical Chemistry, 78(6), 718–727. https://doi.org/10.1134/S1061934823040093
Liu, Y., Deak, N., Wang, Z., Yu, H., Hameleers, L., Jurak, E., Deuss, P. J., & Barta, K. (2021). Tunable and functional deep eutectic solvents for lignocellulose valorization. Nature Communications, 12(1), 5424. https://doi.org/10.1038/s41467-021-25117-1
Majová, V., Jablonský, M., & Lelovský, M. (2021). Delignification of unbleached pulp by ternary deep eutectic solvents. Green Processing and Synthesis, 10(1), 666–676. https://doi.org/10.1515/gps-2021-0066
Nargotra, P., Sharma, V., Sharma, S., Kapoor, N., & Bajaj, B. K. (2022). Development of consolidated bioprocess for biofuel-ethanol production from ultrasound-assisted deep eutectic solvent pretreated Parthenium hysterophorus biomass. Biomass Conversion and Biorefinery, 12(12), 5767–5782. https://doi.org/10.1007/s13399-020-01017-0
Pampang, H., Ranggina, D., Raditya, A. D., Anugrawan, A. O., Julianto, R., & Ole, M. A. N. (2025). The effect of simultaneous combination of hydrothermal and ultrasound-natural deep eutectic solvent (NADES) to increase the delignification of rice straw. 020009. https://doi.org/10.1063/5.0298799
Rozas, S., Benito, C., Alcalde, R., Atilhan, M., & Aparicio, S. (2021). Insights on the water effect on deep eutectic solvents properties and structuring: The archetypical case of choline chloride + ethylene glycol. Journal of Molecular Liquids, 344, 117717. https://doi.org/10.1016/j.molliq.2021.117717
Sharma, V., Nargotra, P., Sharma, S., & Bajaj, B. K. (2021). Efficacy and functional mechanisms of a novel combinatorial pretreatment approach based on deep eutectic solvent and ultrasonic waves for bioconversion of sugarcane bagasse. Renewable Energy, 163, 1910–1922. https://doi.org/10.1016/j.renene.2020.10.101
Vilková, M., Płotka-Wasylka, J., & Andruch, V. (2020). The role of water in deep eutectic solvent-base extraction. Journal of Molecular Liquids, 304, 112747. https://doi.org/10.1016/j.molliq.2020.112747
Wood, I. P., Elliston, A., Ryden, P., Bancroft, I., Roberts, I. N., & Waldron, K. W. (2012). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass and Bioenergy, 44, 117–121. https://doi.org/10.1016/j.biombioe.2012.05.003
Xu, G.-C., Ding, J.-C., Han, R.-Z., Dong, J.-J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203, 364–369. https://doi.org/10.1016/j.biortech.2015.11.002
Yan, D., Ji, Q., Yu, X., Li, M., Abiola Fakayode, O., Yagoub, A. E. G. A., Chen, L., & Zhou, C. (2021). Multimode-ultrasound and microwave assisted natural ternary deep eutectic solvent sequential pretreatments for corn straw biomass deconstruction under mild conditions. Ultrasonics Sonochemistry, 72. https://doi.org/10.1016/j.ultsonch.2020.105414
Yang, Y., Zhao, L., Ren, J., & He, B. (2022). Effect of Ternary Deep Eutectic Solvents on Bagasse Cellulose and Lignin Structure in Low-Temperature Pretreatment. Processes, 10(4), 778. https://doi.org/10.3390/pr10040778
Yanuartono, Yanuartono, Purnamaningsih, H., Indarjulianto, S., & Nururrozi, A. (2017). Potensi jerami sebagai pakan ternak ruminansia. Jurnal Ilmu-Ilmu Peternakan, 27(1), 40–62. https://doi.org/10.21776/UB.JIIP.2017.027.01.05
Unduhan
Diterbitkan
Cara Mengutip
Lisensi
Hak Cipta (c) 2026 Maria Assumpta Nogo Ole, Dian Ranggina , Harun Pampang, Muhammad Arham Yunus, Zakiyah Darajat, Mimin Septiani, Andina Sari Maharani , Andi Ahmad Maulana Senna Cincing, Sherlina Zalfa Pertiwi, Dwi Ferel Imanuel Bala (Penulis)

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.










