PENGARUH PERLAKUAN ASAM MALEAT TERHADAP DIAMETER, DENSITAS, DAN MOISTURE CONTENT SERAT RAMI
DOI:
https://doi.org/10.61844/jtkm.v4i1.1111Kata Kunci:
Serat rami, Asam maleat, Perlakuan kimia, Komposit, Sifat fisisAbstrak
Sifat ramah lingkungan dari serat rami menyebakan penggunaannya sebagai penguat dalam matriks polimer terus berkembang. Namun, sifat hidrofilik yang dimiliki serat rami secara signifikan dapat menyebabkan ikatan antarmuka yang kurang baik ketika serat dijadikan penguat pada komposit polimer. Perlakuan kimia merupakan salah satu metode yang digunakan untuk mengurangi sifat hidrofilik serat rami. Penelitian ini bertujuan untuk mengetahui pengaruh variasi konsentrasi asam maleat terhadap sifat fisis serat rami seperti moisture content, densitas, dan diameter. Serat rami diperlakukan dengan berbagai konsentrasi asam maleat (2, 4, 6, 8, dan 10 wt.%). Hasil penelitian menunjukkan bahwa perlakuan kimia secara efektif mengurangi moisture content pada serat rami, dengan nilai terendah yaitu 8,52%, yang diamati pada sampel yang direndam dengan 6 wt.% larutan asam maleat. Demikian pula pada hasil pengukuran densitas, dimana densitas naik seiring dengan peningkatan konsentrasi asam maleat dan maksimal pada sampel konsentrasi 6 wt.% dengan nilai 1,4267 gr/cm3. Hal ini disebabkan terlarutnya sebagian daerah amorf pada permukaan serat, sehingga terjadi peningkatan compactness serat. Hal ini didukung oleh hasil pengukuran diameter dimana nilainya menurun secara konsisten dengan peningkatan konsentrasi. Modifikasi permukaan ini menunjukkan bahwa konsentrasi asam maleat 6 wt.% memberikan kondisi perlakuan yang optimal, yang diharapkan dapat meningkatkan ikatan antarmuka serat-matriks pada komposit polimer.
Unduhan
Referensi
H. Pratiwi, Kusmono, and M. W. Wildan, “Influences of sodium hydroxide and oxalic acid treatments on physical, mechanical, thermal properties, and morphology of ramie fibers,” J. Mater. Res. Technol., vol. 30, pp. 8648–8660, 2024, doi: https://doi.org/10.1016/j.jmrt.2024.05.233.
J. Holbery and D. Houston, “Natural-fiber-reinforced polymer composites in automotive applications,” JOM, vol. 58, no. 11, pp. 80–86, 2006, doi: 10.1007/s11837-006-0234-2.
H. Pratiwi, Kusmono, and M. W. Wildan, “Enhancing properties of unidirectional ramie fibers-reinforced polyester composites via alkali and oxalic acid treatments,” Results Eng., vol. 25, p. 104164, 2025, doi: https://doi.org/10.1016/j.rineng.2025.104164.
F. Kang, H. Han, H. Wang, D. He, and M. Zhou, “Study on water absorption of hydrophobically modified ramie fiber and the reinforced polypropylene composites,” J. Appl. Polym. Sci., vol. 140, no. 33, p. e54278, 2023, doi: https://doi.org/10.1002/app.54278.
H. Pratiwi, Kusmono, and M. W. Wildan, “Development and characterization of polyester/ramie fiber hybrid composites reinforced with crystalline nanocellulose extracted from durian peel waste,” J. Mater. Res. Technol., vol. 34, pp. 1201–1212, 2025, doi: https://doi.org/10.1016/j.jmrt.2024.12.159.
M. S. Wahyudi et al., “The effect of organic acid hydrolysis on the properties of nanocellulose from edamame husk (Glycine max (L.) merill),” Case Stud. Chem. Environ. Eng., vol. 11, no. March, p. 101179, 2025, doi: 10.1016/j.cscee.2025.101179.
R. Saravanan, T. Malyadri, M. S. S. Rao, and N. Sunkara, “Synthesize and characterization of maleic acid treated banana fiber composites,” Mater. Today Proc., vol. 18, pp. 5382–5387, 2019, doi: 10.1016/j.matpr.2019.07.565.
M. R. M. Asyraf et al., “Mechanical properties of oil palm fibre-reinforced polymer composites: a review,” J. Mater. Res. Technol., vol. 17, pp. 33–65, 2022, doi: 10.1016/j.jmrt.2021.12.122.
C. Lv and J. Liu, “Alkaline Degradation of Plant Fiber Reinforcements in Geopolymer: A Review,” Molecules, vol. 28, no. 4, 2023, doi: 10.3390/molecules28041868.
Y. Saadati, J. F. Chatelain, G. Lebrun, and Y. Beauchamp, “Comparison of density measurement methods for unidirectional flax-epoxy polymer composites,” Eur. Conf. Multifunct. Struct., pp. 1–6, 2019, doi: 10.23967/emus.2019.014.
Balaji and Nagarajan, “Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves,” Carbohydr. Polym., vol. 174, pp. 200–208, 2017, doi: 10.1016/j.carbpol.2017.06.065.
Z. H. Kamaruddin, R. Jumaidin, R. A. Ilyas, M. Z. Selamat, R. H. Alamjuri, and F. A. Md Yusof, “Influence of Alkali Treatment on the Mechanical, Thermal, Water Absorption, and Biodegradation Properties of Cymbopogan citratus Fiber-Reinforced, Thermoplastic Cassava Starch–Palm Wax Composites,” Polymers (Basel)., vol. 14, no. 14, 2022, doi: 10.3390/polym14142769.
E. B. C. Santos et al., “Effect of alkaline and hot water treatments on the structure and morphology of piassava fibers,” Mater. Res., vol. 21, no. 2, pp. 1–11, 2018, doi: 10.1590/1980-5373-MR-2017-0365.
M. Kathirselvam, A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar, “Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment,” Carbohydr. Polym., vol. 217, no. April, pp. 178–189, 2019, doi: 10.1016/j.carbpol.2019.04.063.
A. Y. Al-Maharma and N. Al-Huniti, “Critical review of the parameters affecting the effectiveness of moisture absorption treatments used for natural composites,” J. Compos. Sci., vol. 3, no. 1, 2019, doi: 10.3390/jcs3010027.
S. R. Djafari Petroudy, “3 - Physical and mechanical properties of natural fibers,” M. Fan and F. B. T.-A. H. S. N. F. C. in C. Fu, Eds. Woodhead Publishing, 2017, pp. 59–83. doi: https://doi.org/10.1016/B978-0-08-100411-1.00003-0.
A. Kar, D. Saikia, S. Palanisamy, C. Santulli, C. Fragassa, and S. Thomas, “Effect of Alkali Treatment under Ambient and Heated Conditions on the Physicochemical, Structural, Morphological, and Thermal Properties of Calamus tenuis Cane Fibers,” Fibers, vol. 11, no. 11, 2023, doi: 10.3390/fib11110092.
M. Ghozali, D. Ariawan, and E. Surojo, “The Effect of Alkali Treatment And Microcrystalline Cellulose Addition on Density Value of Cantala Fiber Reinforced Unsaturated Polyester Composites,” Mek. Maj. Ilm. Mek., vol. 20, no. 1, p. 1, 2021, doi: 10.20961/mekanika.v20i1.47460.
G. L. Devnani and S. Sinha, “Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber,” Compos. Part B Eng., vol. 166, no. October 2018, pp. 436–445, 2019, doi: 10.1016/j.compositesb.2019.02.042.
M. J. M. Ridzuan, M. S. Abdul Majid, M. Afendi, S. N. Aqmariah Kanafiah, J. M. Zahri, and A. G. Gibson, “Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites,” Mater. Des., vol. 89, pp. 839–847, 2016, doi: 10.1016/j.matdes.2015.10.052.
S. M. Shahril, M. J. M. Ridzuan, M. S. A. Majid, A. M. N. Bariah, M. T. A. Rahman, and P. Narayanasamy, “Alkali treatment influence on cellulosic fiber from Furcraea foetida leaves as potential reinforcement of polymeric composites,” J. Mater. Res. Technol., vol. 19, pp. 2567–2583, 2022, doi: 10.1016/j.jmrt.2022.06.002.
P. Senthamaraikannan and M. Kathiresan, “Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L,” Carbohydr. Polym., vol. 186, no. January, pp. 332–343, 2018, doi: 10.1016/j.carbpol.2018.01.072.
A. Q. Dayo et al., “Impacts of hemp fiber diameter on mechanical and water uptake properties of polybenzoxazine composites,” Ind. Crops Prod., vol. 111, no. July 2017, pp. 277–284, 2018, doi: 10.1016/j.indcrop.2017.10.039.
Unduhan
Diterbitkan
Cara Mengutip
Lisensi
Hak Cipta (c) 2025 Henny Pratiwi, Didik Nurhadiyanto, Aulia Majid, Stevanus Trian Putra Pamungkas, Rija Budi Santoso, Faizal Lanang Djati, Dicky Kurniawan

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.










