STUDI ISOTHERM ADSORPSI CU(II) DALAM LARUTAN MENGGUNAKAN ZEOLIT TERAKTIVASI

Penulis

DOI:

https://doi.org/10.61844/jtkm.v3i1.755

Kata Kunci:

Isotherm, Adsorpsi, Zeolit, Cu(II)

Abstrak

Proses penghilangan logam berat khususnya Cu(II) menjadi salah satu solusi dari permasalahan pencemaran lingkungan yang terjadi akibat dari kegiatan industri. Adsorpsi menjadi salah satu metode yang efisien dan efektif dalam mengatasi permasalahan tersebut karena mudah untuk dioperasikan dan tidak memerlukan biaya yang tinggi. Penelitian ini dilakukan dengan memanfaatkan zeolit alam sebagai adsorben dengan proses aktivasi secara fisika dengan suhu 105 oC selama 4 Jam untuk tahap pengeringan dan tahap kalsinasi menggunakan tanur dengan suhu 550 oC selama 2 Jam.  Selain itu, penelitian ini juga bertujuan untuk mempelajari mekanisme adsorpsi yang terjadi antara molekul Cu(II) dengan adsorben zeolit berdasarkan parameter dari beberapa model isotherm antara lain: Langmuir, Freundlich, Temkin, Jovanovic, dan Harkin-Jura. Hasil menunjukkan bahwa model isotherm Langmuir cocok untuk mendeskripsikan proses adsorpsi yang terjadi dengan nilai koefisien korelasi (R2) = 0,9542, qmax= 1,0375 mg.g-1, KL = 0,5463 L.mg-1, dan RL = 0,3210-0,9959. Berdasarkan model isotherm Langmuir, dapat disimpulkan bahwa proses adsorpsi Cu(II) oleh zeolit terjadi secara monolayer pada permukaan adsorben yang homogen.

Unduhan

Data unduhan belum tersedia.

Referensi

O. Abdelwahab and W. M. Thabet, “Natural zeolites and zeolite composites for heavy metal removal from contaminated water and their applications in aquaculture Systems: A review,” Egyptian Journal of Aquatic Research, vol. 49, no. 4. National Institute of Oceanography and Fisheries, pp. 431–443, Dec. 01, 2023. doi: 10.1016/j.ejar.2023.11.004.

S. Malamis and E. Katsou, “A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms,” Journal of Hazardous Materials, vol. 252–253. pp. 428–461, May 05, 2013. doi: 10.1016/j.jhazmat.2013.03.024.

W. El hotaby, A. M. Bakr, H. S. Ibrahim, N. S. Ammar, H. A. Hani, and A. A. Mostafa, “Eco-friendly zeolite/alginate microspheres for Ni ions removal from aqueous solution: Kinetic and isotherm study,” J Mol Struct, vol. 1241, Oct. 2021, doi: 10.1016/j.molstruc.2021.130605.

Z. Mahdi and A. El Hanandeh, “Insight into copper and nickel adsorption from aqueous solutions onto carbon-coated-sand: Isotherms, kinetics, mechanisms, and cost analysis,” Cleaner Chemical Engineering, vol. 3, p. 100045, Sep. 2022, doi: 10.1016/j.clce.2022.100045.

L. Velarde, M. S. Nabavi, E. Escalera, M. L. Antti, and F. Akhtar, “Adsorption of heavy metals on natural zeolites: A review,” Chemosphere, vol. 328. Elsevier Ltd, Jul. 01, 2023. doi: 10.1016/j.chemosphere.2023.138508.

N. M. Daud, S. R. S. Abdullah, H. A. Hasan, A. R. Othman, and N. ‘Izzati Ismail, “Coagulation-flocculation treatment for batik effluent as a baseline study for the upcoming application of green coagulants/flocculants towards sustainable batik industry,” Heliyon, vol. 9, no. 6, Jun. 2023, doi: 10.1016/j.heliyon.2023.e17284.

D. C. Ong, M. D. G. de Luna, S. M. B. Pingul-Ong, and C. C. Kan, “Manganese and iron recovery from groundwater treatment sludge by reductive acid leaching and hydroxide precipitation,” J Environ Manage, vol. 223, no. January, pp. 723–730, 2018, doi: 10.1016/j.jenvman.2018.06.052.

Y. Tadayon, M. E. Bahrololoom, and S. Javadpour, “An experimental study of sunflower seed husk and zeolite as adsorbents of Ni(II) ion from industrial wastewater,” Water Resour Ind, vol. 30, Dec. 2023, doi: 10.1016/j.wri.2023.100214.

C. C. Azubuike, C. B. Chikere, and G. C. Okpokwasili, “Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects,” World Journal of Microbiology and Biotechnology, vol. 32, no. 11. Springer Netherlands, Nov. 01, 2016. doi: 10.1007/s11274-016-2137-x.

S. Maity, P. Bajirao Patil, S. SenSharma, and A. Sarkar, “Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent,” Chemosphere, vol. 307, Nov. 2022, doi: 10.1016/j.chemosphere.2022.136115.

H. Haeril, F. D. I. Sawali, and M. A. Afandy, “Phytoremediation of Cr(VI) from Aqueos Solution by Pistia stratiotes L.: Efficiency and Kinetic Models,” Jurnal Teknik Kimia dan Lingkungan, vol. 8, no. 1, pp. 25–35, Apr. 2024, doi: 10.33795/jtkl.v8i1.3803.

A. B. Pangeran, Moh. A. Afandy, and F. D. I. Sawali, “Efficiency of FeSO4.7H2O as a Coagulant on Chromium Hexavalent Removal Using Coagulation-Flocculation Process: Optimization Using Response Surface Methodology,” Jurnal Teknik Kimia dan Lingkungan, vol. 7, no. 2, pp. 123–133, Oct. 2023, doi: 10.33795/jtkl.v7i2.3560.

J. Lu and F. Zhang, “Novel Fe–Mn oxide/zeolite composite material for rapid removal of toxic copper ions from aqueous solutions,” J Clean Prod, vol. 397, Apr. 2023, doi: 10.1016/j.jclepro.2023.136496.

M. Kavand, P. Eslami, and L. Razeh, “The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: Optimization of the single and binary systems,” Journal of Water Process Engineering, vol. 34, Apr. 2020, doi: 10.1016/j.jwpe.2020.101151.

D. Chukwu Onu, A. Kamoru Babayemi, T. Chinedu Egbosiuba, B. Onyinye Okafor, I. Jacinta Ani, S. Mustapha, J. Oladejo Tijani, W. Chukwuemeke Ulakpa, P. Eguono Ovuoraye, and A. Saka Abdulkareem, “Isotherm, kinetics, thermodynamics, recyclability and mechanism of ultrasonic assisted adsorption of methylene blue and lead (II) ions using green synthesized nickel oxide nanoparticles,” Environ Nanotechnol Monit Manag, vol. 20, Dec. 2023, doi: 10.1016/j.enmm.2023.100818.

L. Roshanfekr Rad and M. Anbia, “Zeolite-based composites for the adsorption of toxic matters from water: A review,” J Environ Chem Eng, vol. 9, no. 5, Oct. 2021, doi: 10.1016/j.jece.2021.106088.

N. Finish, P. Ramos, E. J. C. Borojovich, O. Zeiri, Y. Amar, and M. Gottlieb, “Zeolite performance in removal of multicomponent heavy metal contamination from wastewater,” J Hazard Mater, vol. 457, Sep. 2023, doi: 10.1016/j.jhazmat.2023.131784.

L. P. Sholikah, S. Sumari, and Y. D. Yunisari, “Modification and Application Study of Activated Natural Zeolite for the Treatment of Liquid Waste from Chemical Laboratory,” Jurnal Kimia Sains dan Aplikasi, vol. 26, no. 9, pp. 332–343, Dec. 2023, doi: 10.14710/jksa.26.9.332-343.

J. Serafin and B. Dziejarski, “Application of isotherms models and error functions in activated carbon CO2 sorption processes,” Microporous and Mesoporous Materials, vol. 354, Apr. 2023, doi: 10.1016/j.micromeso.2023.112513.

A. R. P. Hidayat, D. O. Sulistiono, I. K. Murwani, B. F. Endrawati, H. Fansuri, L. L. Zulfa, and R. Ediati, “Linear and nonlinear isotherm, kinetic and thermodynamic behavior of methyl orange adsorption using modulated Al2O3@UiO-66 via acetic acid,” J Environ Chem Eng, vol. 9, no. 6, Dec. 2021, doi: 10.1016/j.jece.2021.106675.

M. Sirotiak, B. Alica, and L. Blinová, “Uv-Vis Spectrophotometric Determinations of Selected Elements in Modelled Aqueous Solutions,” Journal of Environmental Protection, Safety, Education and Management, vol. 2, no. 3, pp. 75–87, 2014.

P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, and S. Sivanesan, “Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions,” Desalination, vol. 261, no. 1–2, pp. 52–60, 2010, doi: 10.1016/j.desal.2010.05.032.

R. Ragadhita and A. B. D. Nandiyanto, “How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations,” Indonesian Journal of Science and Technology, vol. 6, no. 1, pp. 205–234, 2021, doi: 10.17509/ijost.v6i1.32354.

M. Vigdorowitsch, A. Pchelintsev, L. Tsygankova, and E. Tanygina, “Freundlich isotherm: An adsorption model complete framework,” Applied Sciences (Switzerland), vol. 11, no. 17, pp. 1–7, 2021, doi: 10.3390/app11178078.

Moh. A. Afandy and F. D. I. Sawali, “Adsorption of Chromium Hexavalent in Aqueous Solutions Using Acid-Activated Wood Charcoal: Isotherm and Kinetics Study,” Jurnal Ilmiah Teknik Kimia, vol. 8, no. 1, pp. 1–14, 2024.

A. L. Cazetta, A. M. M. Vargas, E. M. Nogami, M. H. Kunita, M. R. Guilherme, A. C. Martins, T. L. Silva, J. C. G. Moraes, and V. C. Almeida, “NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption,” Chemical Engineering Journal, vol. 174, no. 1, pp. 117–125, 2011, doi: 10.1016/j.cej.2011.08.058.

A. O. Dada, A. P. Olalekan, A. M. Olatunya, and O. Dada, “Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn 2+ Unto Phosphoric Acid Modified Rice Husk,” IOSR Journal of Applied Chemistry, vol. 3, no. 1, pp. 38–45, 2012, doi: 10.9790/5736-0313845.

N. Ayawei, A. N. Ebelegi, and D. Wankasi, “Modelling and Interpretation of Adsorption Isotherms,” Journal of Chemistry, vol. 2017. Hindawi Limited, 2017. doi: 10.1155/2017/3039817.

E. Ajenifuja, J. A. Ajao, and E. O. B. Ajayi, “Adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents,” Appl Water Sci, vol. 7, no. 7, pp. 3793–3801, 2017, doi: 10.1007/s13201-017-0527-3.

M. Šuránek, Z. Melichová, M. M. Mirković, M. Ivanović, V. B. Pavlović, L. Kljajević, and S. Nenadović, “The Study of Cu(II) Adsorption onto Synthetically Modified Geopolymers,” Sustainability (Switzerland), vol. 15, no. 4, 2023, doi: 10.3390/su15042869.

A. Muslim, Ellysa, and S. D. Said, “Cu(II) ion adsorption using activated carbon prepared from pithecellobium jiringa (Jengkol) shells with ultrasonic assistance: isotherm, kinetic and thermodynamic studies,” Journal of Engineering and Technological Sciences, vol. 49, no. 4, pp. 472–490, 2017, doi: 10.5614/j.eng.technol.sci.2017.49.4.4.

S. Y. Prabawati, P. D. Widiakongko, and M. A. Taqwim, “Activated Charcoal from Coffee Dregs Waste as an Alternative Biosorbent of Cu(II) and Ag(I),” Indonesian Journal of Chemistry, vol. 23, no. 4, pp. 1120–1128, 2023, doi: 10.22146/ijc.83269.

R. Yulia, H. Husin, M. Zaki, Jakfar, Sulastri, and Ahmadi, “Study of adsorption isotherms on removal of Cu (II) solution using activated carbon of sugar palm fruit shell ( Arenga pinnata),” in IOP Conference Series: Earth and Environmental Science, 2024, vol. 1290, no. 1, pp. 1–9. doi: 10.1088/1755-1315/1290/1/012008.

Unduhan

Diterbitkan

2024-06-27

Cara Mengutip

[1]
M. A. Afandy dan F. D. I. Sawali, “STUDI ISOTHERM ADSORPSI CU(II) DALAM LARUTAN MENGGUNAKAN ZEOLIT TERAKTIVASI”, JTKM, vol. 3, no. 1, hlm. 25–32, Jun 2024.